Một số khái niệm trong quá trình tạo ảnh MRI và các chuỗi xung thông dụng

Nội dung

Một số khái niệm trong quá trình tạo ảnh: TR, TE, T1W, T2W, PD và PDW.

T1: còn gọi là thời gian hồi giãn dọc, có giá trị khoảng 100 ms - 3000 ms. Trong một từ trường nhất định T1 có các giá trị khác nhau. Mỡ có thời gian T1 ngắn nhất 200 - 250 ms, nước tự do càng nhiều thời gian T1 càng dài (>2000 ms). Chất trắng có thời gian T1 ngắn hơn chất xám vì chất trắng chứa nhiều mỡ hơn. Mô nào có T1 ngắn sẽ có tín hiệu mạnh (trắng) và mô nào có T1 dài sẽ có tín hiệu yếu (đen). Cụ thể mỡ sẽ có màu trắng nhất, các mô mềm sẽ có màu xám hơn và các loại dịch có màu đen.

T2: còn gọi là thời gian hồi giãn ngang, có giá trị khoảng 40 - 200 ms, sự khác biệt các mô cũng tương tự cũng tương tự T1 nhưng ngược lại. Mô có T2 dài sẽ cho tín hiệu mạnh (trắng) và mô có T2 ngắn sẽ cho tín hiệu yếu (đen). Trong cơ thể, gan có thời gian T2 ngắn nhất (40ms), mỡ (80 ms) và dịch não tủy có thời gian T2 dài nhất (160ms). Trên hình T2 dịch não tủy ở não thất và khoang dưới nhện có màu trắng, các mô mềm có màu xám và vỏ xương hầu như không có tín hiệu nên có màu đen.

TR (Time of Repetition) là khoảng thời gian từ khi bắt đầu thư dãn dọc đến khi mức độ từ hoá của mô được đo để tạo ra tương phản ảnh. Xác định giá trị TR là xác định thời điểm chụp ảnh (ở trên chúng ta lấy TR là 63% mức thư giãn dọc).

TE (Time of Echo event) là khoảng thời gian từ khi bắt đầu thư dãn ngang đến khi mức độ từ hoá của mô được đo để tạo ra tương phản ảnh (ở trên chúng ta lấy TE là 63% mức thư giãn ngang). Các giá trị kết hợp giữa TE và TR được chọn qua các bảng tuỳ thuộc vào từng loại mô.

Bằng cách điều chỉnh các giá trị TR và TE của T1 và T2, ta thu được các tương phản ảnh tương ứng với một đặc tính mô riêng biệt. Ảnh của T1 và T2 trong trường hợp này gọi là T1 điều chỉnh hay trọng T1 hay hướng tới T1 (T1-weighted: T1W) và T2 điều chỉnh hay trọng T2 hay hướng tới T2 (T2-weighted: T2W). Trong trường hợp lấy TR và TE theo tiêu chuẩn quy ước là thời gian mà thư giãn dọc hay thư giãn ngang đạt 63% giá trị của nó thì đó là ảnh T1 hay T2, còn nếu người chụp điều chỉnh theo TR và TE thì cho ảnh T1W và T2W).

 Nhằm tạo ảnh T1 điều chỉnh, người ta cần chọn một giá trị TR tương ứng với thời gian mà tại đó tương phản T1 lớn nhất giữa hai loại mô. Nếu lựa chọn TR dài hơn sẽ tạo ra cường độ tín hiệu lớn hơn nhưng tương phản T1 ít hơn. Việc lựa chọn TR thích hợp với các giá trị T1 của mô rất có ý nghĩa trong chẩn đoán hay hướng tới T1 lâm sàng, đặc biệt khi phân biệt giữa mô lành và mô bệnh lý. Nếu giá trị TR được chọn bằng giá trị T1 của mô, đó là ảnh được chụp khi mô trở lại 63% sự nhiễm từ mô của nó.

 Nhằm tạo ảnh T2 điều chỉnh, người ta cần chọn một giá trị TE tương ứng với thời gian mà tại đó tương phản T2 lớn nhất giữa hai loại mô. Tương phản T2 cực đại thu được bằng cách dùng TE tương đối dài. Tuy nhiên, nếu dùng TE quá dài thì sự nhiễm từ và tín hiệu RF lại quá thấp để hình thành một ảnh. 

PD (Proton Density) là ảnh khảo sát mật độ proton. Như đã nói trên, khi sự nhiễm từ dọc đạt giá trị cực đại thì tương phản theo thời gian T1 sẽ kém đi. Lúc này tương phản ảnh do mật độ proton của mô quyết định. Do vậy, nếu ta chọn giá trị TR tương đối dài để tạo ảnh tương phản mật độ proton thì gọi là ảnh mật độ proton điều chỉnh (Proton Density-weighted - PDW: Đậm độ proton).  Số lượng proton có trong tế bào và mô, không liên quan với thời gian T1 và thời gian T2. Mô nào có đậm độ proton càng cao thì tín hiệu cộng hưởng từ càng mạnh. Hiện nay hình ảnh PDW được sử dụng trong chuyên khoa thần kinh và cơ xương khớp, trên thực tế lâm sàng PDW có giá trị khi cần đánh giá cấu trúc có tín hiệu thấp như mô sợi.

 

Các chuỗi xung:

FLAIR (Fluid Attenuated Inversion Recovery): chuỗi xung xóa tín hiệu các dịch

Hình thu được từ chuỗi xung FLAIR thuộc loại hình T2W nhưng thành phần nước không có tín hiệu (đen). Trên phim sọ não, FLAIR là chuỗi xung T2, xóa dịch não tủy. Chuỗi xung FLAIR có ý nghĩa phát  hiện  các  tổn  thương  khác  như  chảy  máu, viêm não, xơ hóa mảng (MS).  Trên FLAIR, dịch não tủy bị xóa tín hiệu nên có màu đen, như vậy nếu có chảy máu màng não, tăng tín hiệu, sẽ dễ dàng nhận ra. Đối với nhồi máu não tối cấp (<6h), tín hiệu vùng nhồi máu trên FLAIR đa số bình thường hoặc tăng tín hiệu rất nhẹ.

STIR (Short Time Inversion Recovery): chuỗi xung làm mất tín hiệu của mô mỡ. Hình thu được bằng chuỗi xung STIR là hình đảo ngược âm bản của hình T1W.

DWI (Diffusion Weighted Imaging): Hình ảnh cộng hưởng từ khuếch tán.

Đây là một trong các kỹ thuật mới của cộng hưởng từ, hiện đang được sử dụng phổ biến đối với các bệnh lý sọ não. Cộng hưởng từ khuếch tán là kỹ thuật rất nhạy phát hiện tổn thương não ở giai đoạn nhồi máu rất sớm <1h có thể phát hiện vài phút sau khởi phát, giúp cải thiện độ chính xác cộng hưởng từ lên 95%. Nó được dùng gần như là thiết yếu để phát hiện sớm bệnh lý nhồi máu não tối cấp, cho phép phát hiện tổn thương sau 11 phút và gần như chắc chắn  sau  30 phút. Chuỗi xung khuyếch tán đối với nhồi máu não cấp có độ nhạy khoảng 88-100%, độ đặc hiệu 86-100%. Người ta còn gọi đây là “chuỗi xung nhồi máu”.

Với chuỗi xung khuyếch tán và bản đồ ADC cho phép phát hiện được nhồi máu não >90% trong 1h đầu, nói chung có thể phát hiện được vùng nhồi máu ngay từ những phút đầu tiên, (chỉ âm tính giả khi tổn thương quá nhỏ và thường ở hố sau). Tín hiệu vùng nhồi máu thay đổi theo thời gian, đối với nhồi máu não cấp tính sẽ tăng tín hiệu trên Diffusion và giảm tín hiệu trên bản đồ ADC.

Bình thường nước phân bố trong nội bào và ngoại bào cân bằng nhau và sự khuyếch tán của các phân tử nước dễ dàng trong khoang gian bào. Khi tế bào não bị thiếu oxy làm bơm Na+/K+ và các bơm ion khác suy yếu, dẫn đến tái phân bố nước, nước từ ngoại bào đi vào nội bào (nơi vốn hạn chế sự chuyển động của nước), gây nên phù nề tế bào và giảm thể tích khoang ngoại bào, làm hạn chế sự chuyển động (khuếch tán) của nước khi thiếu máu cấp. Như vậy trong giai đoạn cấp <7 ngày phù nề tế bào làm khoang gian bào hẹp lại và nước trong tế bào bị hạn chế khuyếch tán (giảm tín hiệu). Tuy nhiên sau 7 ngày các tế bào tổn thương bị hoại tử giải phóng nước làm khuyếch tán tăng (tăng tín hiệu).

Nguyên lý DWI là đánh giá sự khuyếch tán của các phân tử nước trong khoang gian bào.

Để biểu thị độ lớn và chiều hướng khuếch tán, người ta sử dụng hệ số khuyếch tán biểu kiến ADC (Apparent Diffusion Coefficient). Hệ số ADC thay đổi tuỳ theo cấu trúc và tình trạng bệnh lý của mô. Mô có hệ số ADC càng lớn, khả năng khuyếch tán của nước trong mô càng mạnh.

Để đánh giá mức độ khuyếch tán, người ta dùng các chênh từ đặc biệt, gọi là chênh từ khuyếch tán (diffusion gradient), cho phép bộc lộ tình trạng lệch pha do ảnh hưởng của khuếch tán. Các chênh từ này được điều chỉnh bằng một tham số gọi là hệ số nhạy cảm khuyếch tán b (diffusion sensitivity factor) được tính bằng sec/mm2. Khi b=0, ảnh chụp không nhạy cảm với khuyếch tán là bình thường. Người ta thường dùng giá trị b = 500 và 1000 để đánh giá khả năng khuyếch tán trong lâm sàng.

Bản đồ ADC là hình được vẽ lại từ các giá trị ADC của các mô, do vậy vùng kém khuyếch tán sẽ có màu đen hơn vùng có khuếch tán tốt. Ngược lại, hình DWI ghi nhận tín hiệu của các proton trong quá trình khuếch tán của chúng tuy vẫn chưa bị chứa một phần đặc thù T2W. Do vậy vùng có tín hiệu cao trên hình DWI là vùng giảm mức độ khuếch tán, ngược với hình bản đồ ADC sẽ có tín hiệu thấp.

Do DWI được sử dụng chuỗi xung điểm vang đồng phẳng nên rất nhạy với chuyển động rất nhỏ của proton nước. Trên DWI, những cấu trúc khuếch tán nhanh sẽ tạo sự suy giảm tín hiệu nhanh hơn, chúng là tín hiệu tối trên hình DWI.

return to top